

Client: NHAI Contractor: APCO Infratech	Project Name: Delhi-Vadodara Expressway
Requirement:	Solution:
To scan & evaluate the pavement layer thickness & ensure the pavement is constructed as per the issued parameters.	APCO uses C-thrue GPR for scanning Pavement layer thickness being constructed for Delhi- Vadodara Expressway, a project of NHAI.

.						
Requirement:	Solution:					
To scan & evaluate the pavement layer	APCO uses C-thrue GPR for scanning Pavement layer thickness being constructed for Delhi-Vadodara Expressway, a project of NHAI.					
the pavement is constructed as per the issued parameters.	C-thrue is a high frequency 2 GHZ Dual Polarized Ground Penetrating Radar (GPR) for accurate scanning and real time analysis of Pavement layers. It assists EPC Contractors, Road Construction Companies & Public works departments to check & ensure that road construction is being constructed as per laid down design parameters.					
checking the pavement layer thickness (Includes	APCO uses C-thrue GPR for pavement layer scanning & evaluating the thickness of each layer.					
bituminous layer, WMV & GSV) & to ensure the pavement is constructed as per the given specification &	Pavement Layers Design parameter is defined as:Bituminous Layer - Total Thickness - 250 mm (100+80+70)WMV- Total Thickness - 150 mmGSV- Total Thickness - 200 mm					
specification & follows all the necessary guidelines.	Bituminous Layer : Total Thickness 250 mm (80+100+70) WMM : 150 mm SV : 200 mm Sol					

Step 2 (a)- Post processing of data using semi-automatic to automatic GRED 3D Software
For pavement layer data analysis, use of post processing software is necessary for interpretation of clear layer by layer depth. GRED 3D HD software allows semi- automatic to automatic post processing of pavement layer data requiring minimal human intervention allowing long lengths of kms to be post processed quickly.
In Step II, for clear representation of each layer, Output data were interpreted by post-processing GRED 3D HD software:

(Processed Pavement Layer Data for multiple layers upto 500mm)

Step 2 (b) : Calibration of Bituminous Layer

They use a sample core & measure the thickness manually to calibrate data based on bituminous design layers thickness 250mm (80+100+70)

(Actual Thickness Measured with CORE Sample)

Pavement layer data was exported into excel for further access.

		ery Editor								- 8 >
× .	Home Transform Add	Column View								^
2 & 1 • F	Refresh review • Manage •	Choose Remove Columns + Columns +	Keep Remove Rows • Rows •	Ž↓ Ž↓ Split Column	Data Type: Whole No Data Type: Whole No Dy Use First Row as By 1/2 Replace Values	umber • Headers •	Merge Queries • Append Queries • Combine Files	Manage Parameters • Data so settin	Ince	
se	Query	Manage Columns	Reduce Rows	Sort	Transform		Combine	Parameters Data So	irces New Query	
	√ fx = Table.Se	lectRows(#"Filtered	Rows", each	<pre>(/#"X [m]") <></pre>	17.83 and [#"X [m]"] <>	17,94))				
	1.2 X [m]	123 Altitude [m]	- A ^B c Latitu	ide 🗌	 A^B Longitude 	- 1.2 LA	/ER-4: Depth [m] 🔽]	.2 LAYER-1: Depth [m]	1.2 LAYER-2: Depth [m]	* 1.2 LAYER-3: Depth [m]
1	1.84		0				0.401	0.	256 0	161 0.
2	3.83		0				0.403	0.	055 0	.168 0.
3	5.84		0				0.405	0.	753 0	. 163 0.
4	7.83		0				0.42	0.	056	0.16 0.
5	9.84		0				0.414	0.	052 0	. 167 0.
6	11.84		0				0.387	0.	051 0	.172 0.
7	13.83		0				0.397	0.	052 0	. 166 0.
8	15.84		0				0.388	(.05 0	0.161 0.

Document ref :	Date : 06-08-2021

